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Abstract—With the progress of modern sequencing tech-
nologies a number of complete genomes is now available.
Traditional motif discovery tools cannot handle this massive
amount of data, therefore the comparison of complete genomes
can be carried out only with ad hoc methods. In this work we
propose a distance function based on subword compositions,
which extends the Average Common Subword approach (ACS)
of Ulitsky et al. [15]. ACS is closely related to the cross entropy
estimated between two entire genome sequences, and thus to
some set of “independent” subwords, namely the irredundant
common subwords. Then, we filter the irredundant common
subwords by means of underlying-paired motifs, which relate
to each other regions of two genome sequences. This set of
motifs is, by construction, linear in the size of input and
without overlap; we call the selected motifs, underlying-paired
irredundant common subwords, or simply unic subwords. Pre-
liminary results show the validity of our method, and suggest
novel computational approaches for analyzing the evolution of
genomes.

I. WHOLE-GENOME SEQUENCE ANALYSIS:

BACKGROUND

The global spread of low-cost high-throughput sequencing

technologies has made publicly available a number of com-

plete genomes, and this number is still growing quite rapidly

day by day. In contrast, only few computational methods

can really handle as input entire chromosomes, or entire

genomes. Similarly, the global alignment of large genomes

has become a prohibitive task even for supercomputers,

hence simply infeasible. To overcome this recent obstacle,

in the last ten years a variety of alignment-free methods

have been proposed. In principle they are all based on

counting procedures that characterize a sequence based on

its constituents, e.g., k-mers [3], [11].

For example, Sims et al. recently applied the Feature Fre-

quency Profiles method (FFP) presented in [11] to compute

a whole-genome phylogeny of mammals [10] —i.e., large

eukaryotic genomes, including the human genome— and of

bacteria.

In brief, in this k-mer based approach, they first estimate

the parameter k in order to compute a feature vector for

each sequence; this vector is composed by the frequency of

each possible k-mer. Each feature vector is then normalized

by the total number of k-mers found (i.e., by the sequence

length), obtaining a probability distribution vector, or feature

frequency profile, for each genome. FFP finally computes the

distance matrix between all pairs of genomes by applying

the Jensen-Shannon divergence to their frequency profiles.

For completeness, we notice that, in large eukaryotes, they

filter out high-frequency and low-complexity features among

all the k-mers found.

When comparing genomes it is well known that different

evolutionary mechanisms can take place. In this framework,

two closely related species are expected to share larger

portions of DNA than two distant ones, whereby also other

large complements and reverse-complements, or inversions,

may occur [13]. In this work we will take into account all

these symmetries, in order to define a measure of comparison

between genomes.

In this sense, an important fact is that most methods in

the literature use only a portion of complete genomes [15].

For instance, there are approaches that use only the genic

regions [3], [14] or the mitochondria [8]; in other cases,

methods filter out regions that are highly repetitive or with

low complexity, as for [11]. Recently, it has been shown

that the evolutionary information is also carried by the non-

genic regions [10]. For several families of viruses, we are

not even able to estimate a complete phylogeny by analyzing

their genes, since these organisms may share a very limited

genetic material [15].

A. Average Common Subword Approach

Among the many distance measures proposed in the

literature, which in most cases are dealing with k-mers, as

seen above, an effective and particularly elegant method is

the Average Common Subword approach (ACS), introduced

by Ulitsky et al. [15]. In short, given two sequences s1 and

s2, where s1 is the reference sequence, it counts the length

l[i] of the longest subword starting at position i of s1 that

is also a subword of s2, for every possible position i of s1
(see Table I). This count is then averaged over the length of

s1. The general form of ACS follows:

ACS(s1, s2) =

∑|s1|
i=1 l[i]

|s1| .

The ACS measure is intrinsically asymmetric, but with

simple operations can be reduced to a distance-like mea-

sure. We can notice the similarity with the cross entropy
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of two probability distributions P and Q: H(P,Q) =
−∑

x p(x) log q(x), where p(x) log q(x) measures the num-

ber of bits needed to code an event x from P if a different

coding scheme based on Q is used, averaged over all the

possible events x.

s1[i] A C A C G T A C
l1[i] 2 1 4 3 3 3 2 1

s2[j] T A C G T G T A
l2[j] 3 4 3 2 1 3 2 1

Table I
EXAMPLE OF COUNTERS l[i] FOR THE ACS APPROACH. COUNTERS

l1[i] AND l2[j] FOR THE COMPUTATION OF ACS(s1, s2) AND

ACS(s2, s1), RESPECTIVELY, WHERE s1 = ACACGTAC, s2 =
TACGTGTA, AND i, j = 1, . . . , 8.

The beauty of the ACS measure is that it is not based on

fixed length subwords, but it can capture also variable length

matches, in contrast to most methods that are based on fixed

sets of k-mers. In fact, with the latter the choice of the

parameter k is critical, and every method needs to estimate

k from the data under examination, typically using empir-

ical measurements [11]. From the theoretical prospective

Burstein et al. [15] showed that the ACS approach mimics

the cross entropy estimated between two large sequences

generated by a finite-state Markov process.

ACS proved to be useful for reconstructing whole-genome

phylogenies of viruses, bacteria, and eukaryotes, outper-

forming in most cases the state-of-the-art methods [15].

Here we aim to characterize and improve the ACS method,

filtering out motifs that might be not useful for a whole-

genome phylogeny of different organisms. In particular, we

want to discard common motifs occurring in regions covered

by other more significant motifs.

II. MATERIALS AND METHODS

In this section we propose a distance measure between en-

tire genomes based on UNderlying-paired Irredundant Com-

mon subwords, or unic subwords (pronounced as ”unique

subwords”) .

A. Irredundant Common Subwords

In the literature, the values l[i] captured by the ACS

approach are called the matching statistics, as described in

detail in Gusfield et al. [7]. Here we aim to characterize

the matching statistics with associated motifs, in order to

identify which motifs are essential for the ACS measure.

The notion of irredundancy has been introduced in [2]

and later modified for the problem of protein comparison

[4], [5]. In this paper we consider this version, also called

irredundant common motifs, but we restricted the domain

only to subwords (i.e., without mismatches/don’t cares). This

ensures that there exists a close correspondence between the

irredundant common subwords and the matching statistics.

Definition 1: (Irredundant/Redundant common subword)

A common subword w is irredundant if and only if at least

an occurrence of w in s1 or s2 is not covered by other

common subwords. A common subword that does not satisfy

this condition is called a redundant common subword.

As in the case with don’t cares, we note that every irredun-

dant common subword w is the result of some intersection

of the two entire sequences, where each meet, in this case,

corresponds to a particular a set of subwords. We further

observe that the set of all irredundant common subwords

Is1,s2 is a subset of the well-known linear set of maximal
common subwords, defined as the common subwords for

which the list of occurrences cannot be deduced by the list

of a longer subword, possibly adding an offset d (see [1]

for a more complete treatment of this topic). Therefore, the

number of irredundant common subwords is bounded by

m+ n, where |s1| = n and |s2| = m.

In summary, the notion of irredundant common subwords

is useful to decompose the information given by ACS into

several patterns, and then perform an additional filtering on

the most representative common motifs for each region of

the sequences s1 and s2.

B. Unic Subwords

When comparing entire genomes we want to avoid that

large non-coding regions, which by nature tend to be highly

repetitive, may overcount the same subwords a multiple

number of times, misleading the final similarity score. In

fact, while analyzing massive genomes, the number of

repeated motifs is very high, particularly in the non-genic

regions. For instance, in our experiments the number of

irredundant common subwords can easily reach 2(m +
n)/log4(m + n) elements in many pairwise comparisons,

where m and n are the lengths of s1 and s2; and a very

large number of overlaps between these subwords is present.

Therefore we need to filter out part of this information, and

select for each region of the sequences the “best” common

subword by some measure.

In this regard, we must recall the definition of motif

priority and of underlying motif, adapted from [6] to the case

of pairwise sequence comparison. We will take as input the

irredundant common subwords and the underlying quorum

u = 2. Let now w and w′ be two distinct subwords. We

say that w has priority over w′, or w → w′, if and only if

either |w| ≥ |w′|, or |w| = |w′| and w rank lower than w′ in

the lexicographic order. In this case, every subword can be

defined just by its length and one of its starting positions in

the sequences, meaning that any set of subwords is totally

ordered with respect to the priority rule. Moreover, we say

that an occurrence l of w is tied to an occurrence l′ of a

subword w′, if (El,k ∩ El′,k′) �= ∅ and w′ → w, where k
and k′ are, respectively, the lengths of w and w′. Otherwise,

we say that l is untied from l′. Now, let s = s1s2 be the

string obtained through the concatenation of s1 with s2, and

191



let Is1,s2 be the set of irredundant common subwords that

lie on s.

Definition 2: (Underlying-paired representative set, Unic

subword) A set of subwords Us1,s2 ⊆ Is1,s2 is said to be

the underlying-paired representative set of s if and only if:

(i) every subword w in Us1,s2 , called unic subword, has

at least two occurrences, one in s1 and the other in

s2, that are untied from all the untied occurrences of

other subwords in Us1,s2 \ w, and

(ii) there does not exist a subword w ∈ Is1,s2 \Us1,s2 such

that w has at least two untied occurrences, one per

sequence, from all the untied occurrences of subwords

in Us1,s2 .

As for the underlying motifs [6], it is easy to see that this

set of unic subwords exists, and is unique for a concatenation

s. A direct procedure to discover the whole set Us1,s2 can

be obtained from the algorithm in [6]. As a corollary we

know that the untied occurrences of the unic subwords can

be mapped into the sequences s1 and s2 without overlaps in

case of distinct subwords, resulting in a total length linear

in the size of the sequences.

Thus, following the interesting experimental results ob-

tained with the ACS approach, here we aim to select the

irredundant common subwords that best fit each region of

s1 and s2, employing a technique that we call Unic Subword
Approach or, in short, USA. This technique is based on

a simple pipeline. It first selects the irredundant common

subwords and subsequently filters out the subwords that are

not underlying motifs.

C. Efficient Computation of the Unic Subwords

Unlike the ACS method that can efficiently compute the

matching statistics, the algorithm we will describe in the

following requires a little more computation due to the

filtering of the underlying-paired motifs. We first show how

to compute the irredundant common subwords from the

matching statistics, and then we present an approach for

the selection of the unic subwords among these motifs by

exploiting some algorithmic techniques.

1) Discovery of the Irredundant Common Subwords: One

can use the matching statistics to compute the irredundant

common subwords in a simple way, thus exploiting the

fast algorithms proposed in [7], [15]. These algorithms use

two different data structures, either the suffix tree or the

suffix array, to find all possible right-maximal occurrences

of common subwords between s1 and s2.

Here we use instead the generalized suffix tree. The first

step consists in making a depth-first traversal of all nodes

of Ts1,s2 , and coloring each internal node with the colors of

its leaves (each color corresponds to an input sequence). In

this traversal, for each leaf i of Ts1,s2 , we capture the closest

ancestor of i having both the colors c1 and c2, say the node

w̄. Then, w is a common subword, and i is one of its right-

maximal occurrences (in s1 or in s2); we select all subwords

having at least one right-maximal occurrence. The resulting

set of subwords, that is linear in the size of the sequences

O(m+n), represents a superset of the irredundant common

subwords, since their right-maximal occurrences could be

not left-maximal. The second part that keeps only the left-

maximal occurrences is omitted due to space limitations.

2) Selection of the Unic Subwords: Once acquired the

irredundant common subwords and their tree T I
s1,s2 , com-

posed by at most m+n nodes, we filter out the subwords that

are not underlying-paired for the case s = s1s2, obtaining

the set of unic subwords Us1,s2 . As in [6], this process

first requires to sort the subwords. Then, other two steps

are required for each subword w: checking for the untied

occurrences of w, and storing these occurrences.

In conclusion, our approach requires O((m +
n) logmin{m,n} log logmin {m,n}) time and O(m + n)
space to discover the set of all unic subwords Us1,s2 by

employing a generalized suffix tree for s1 and s2.

D. A Distance-like Measure based on Unic Subwords

In the following we report the basic steps of our distance-

like measure, similarly to ACS.

Let us assume that we have computed Us1,s2 .For every

subword w ∈ Us1,s2 of length k we sum up the score

hs1
w

∑k
i=1 i = hs1

w k(k + 1)/2 in USA(s1, s2), where hs1
w

is the number of its untied occurrences in s1 with respect

to Us1,s2 . Then, we average USA(s1, s2) over the length of

the first sequence, s1, yielding

USA(s1, s2) =

∑
w∈Us1,s2

hs1
w |w|(|w|+ 1)

2|s1| .

Similarly to the method ACS we can compute a sym-

metrical distance-like measure dUSA(s1, s2) between the

sequences s1 and s2:

USA(s1, s2) =
log4(|s2|)

USA(s1, s2)
− 2log4(|s1|)

(|s1|+ 1)
,

dUSA(s1, s2) =
USA(s1, s2) + USA(s2, s1)

2
.

We can easily see that the correction term rapidly con-

verges to zero as |s1| increases; moreover we notice that

dUSA(s1, s2) grows as the two sequences s1 and s2 diverge.

From now we will simply refer to the measure dUSA(s1, s2)
as the Unic Subword Approach measure, or USA.

III. EXPERIMENTAL RESULTS

A. Genome Datasets and Reference Taxonomies

We assess the effectiveness of the Unic Subword Ap-

proach on the estimation of whole-genome phylogenies of

different organisms. We test our distance function on three

types of datasets that consider complete genomes among

viruses, prokaryotes, and unicellular eukaryotes.
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In the first dataset we selected 54 virus isolates of the 2009

human pandemic Influenza A – subtype H1N1, also called

the “Swine Flu”. The influenza A virion has eight segments

of viral RNA with different functions. We concatenate these

segments by means of a symbol not in Σ, e.g., ‘$’ or ‘N’,

according to their natural order. To compute a reference

taxonomic tree, we perform an extensive multiple sequence

alignment using the ClustalW2 tool as suggested by many

scientific articles on the 2009 Swine Flu [12]. Then, we

compute the tree using the DNAML tool from the PHYLIP

software package1, which implements the maximum likeli-

hood method for DNA sequences.

In the second dataset we selected 18 prokaryotic or-

ganisms among the species used in [15] for a prokaryotic

DNA genome phylogenomic inference. We chose the species

whose complete genome has been sequenced and published,

and whose phylogenetic tree structure can be inferred by

well-established methods in the literature. The organisms

come from both major prokaryotic domains: Bacteria, 10

organisms in total, and Archaea, 8 organisms in total.

We compute their tree-of-life by using genes that code

for the 16S ribosomal RNA, a small ribosomal subunit

characterizing prokaryotes and widely used to reconstruct

their phylogeny. Then we perform a maximum likelihood

estimation on the aligned set of sequences, and use DNAML

from PHYLIP in order to compute a reference tree based on

the resulting estimations.

In the third dataset we selected 5 eukaryotic taxa of the

protozoan genus Plasmodium whose genomes have been

completely sequenced. Plasmodium are unicellular eukary-

otic parasites best known as the etiological agents of malaria

infectious disease. The sequences have lengths ranging from

18 Mbp to 24 Mbp, accounting for a total 106 Mbp. We used

as reference tree the taxonomy computed by Martinsen et
al. [9], as suggested by the Tree of Life Web Project (ToL).2

B. Whole-Genome Phylogeny Reconstruction

We exploited the above datasets to compare our method,

the Unic Subword Approach (USA), with other efficient

state-of-the-art approaches in the whole-genome phylogeny

reconstruction challenge: ACS, FFP, and FFPRY . The

FFPRY method, instead of FFP, employs a reduced alphabet,

the Purine-Pyrimidine alphabet (RY), which is composed by

two character classes: [A,G] (both purine bases, denoted

by R) [C,T] (both pyrimidines, denoted by Y). We did not

perform tuning operations on the methods or a preliminary

filtering of the sequences.

We reconstruct the phylogenomic trees from the distance

1PHYLIP (phylogenetic inference package) is a free computational
phylogenetics software package available at http://evolution.genetics.
washington.edu/phylip.

2The Tree of Life web project is hosted by the University of Arizona
and available at http://www.tolweb.org.

Species Group USA ACS FFP FFPRY

Influenza A Viruses 80/102 84/102 100/102 96/102
Archaea Prokaryotes 4/10 4/10 6/10 6/10
Bacteria Prokaryotes 6/14 10/14 6/14 10/14
Arch. & Bact. Prokaryotes 20/30 22/30 20/30 22/30
Plasmodium Eukaryotes 0/4 0/4 4/4 0/4

Table II
COMPARISON OF WHOLE-GENOME PHYLOGENY RECONSTRUCTIONS.

NORMALIZED ROBINSON-FOULDS SCORES WITH THE CORRESPONDING

REFERENCE TREE.

matrices using the Neighbor-Joining algorithm (NJ) as im-

plemented by the NEIGHBOR tool in the PHYLIP package.

We compute the symmetric difference of Robinson and

Foulds (R-F) to compare the resulting topologies, assuming

all edges of unit length, to the respective reference trees.

C. Performance Comparison and Statistics

Table II compares the phylogenomic reconstruction of our

method with that of the other state-of-the-art approaches, by

showing the R-F difference with respect to the reference

taxonomy of each species. We ran FFP and FFPRY for

different values of k (the fixed subword length) as suggested

by [11], retaining the best results in agreement with the

reference trees.

Our method, USA, achieves good performance in every

test considering the R-F difference with the reference tax-

onomy, and very good performance if we further analyze

the resulting phylogenies, as in Figure 1. We achieve in

all cases at least the score of the best performing method,

outperforming the other methods for sequences that share

large parts, as in the case of viruses.

More in detail, Figure 1 shows that our approach can

distinguish the two main clades of the 2009 Swine Flu

(in green and red), that have been outlined in [12]. The

origin of the flu could reside in the Mexican isolate of

early April 2009 (Mexico/4108, in green), to which all

other green isolates may ensue, from California/06 to the

European isolates. Two sub-clades for the U.S. states of

California and Texas are highlighted within the red clade,

most probably corresponding to the first major evolutions of

the viral disease.

Similar results are obtained for the second dataset. USA

can easily distinguish the Archaea domain, from the Bac-

teria domain, and also other sub-clades with respect to the

reference tree (figure not shown).

For the third dataset, the whole-genome phylogeny of the

genus Plasmodium generated by USA (figure not shown)

corresponds exactly to the taxonomy found in the literature.

In Table III we present some statistics for the unic

subwords. We can see that only a few subwords are se-

lected on average among the irredundant common subwords.

Removing the high-frequency subwords (which were very

few), we notice that the unic subwords typically have lengths
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A/MexicoCity/WR1312N/2009H1N1-2009/09/10

A/ I ta ly /05 /2009H1N1-2009/05 /03

A/Fukuoka-C/1/2009H1N1-2009/06/07

A/Par is /2592/2009H1N1-2009/05/01

A/Thailand/CU-B5/2009H1N1-2009/06/13

A/Mexico/InDRE13495/2009H1N1-2009/04/29

A/Hiroshima/200/2009H1N1-2009/06/13

A/SantoDomingo/WR1068N/2009H1N1-2009/06/25

A/Moscow/I IV05/2009H1N1-2009/06/20

A/Taiwan/T0724/2009H1N1-2009/05/19

A/NewYork/06/2009H1N1-2009/04/25

A/SanSalvador/0169T/2009H1N1-2009/06/12

A/Bei j ing/01/2009H1N1-2009/05/15

A/NewYork/4197/2009H1N1-2009/06/17

A/Korea/01/2009H1N1-2009/05/02

A/Utah/05 /2009H1N1-2009/06 /14

A/Toronto/T5308/2009H1N1-2009/06/03

A/ I ta ly /85 /2009H1N1-2009/06 /14

A/Canada-NS/RV1565/2009H1N1-2009/04/30

A/Texas/08/2009H1N1-2009/04/24

A/Cal i fornia/07/2009H1N1-2009/04/09

A/England/195/2009H1N1-2009/04/28

A/Mexico/4108/2009H1N1-2009/04/02

A/Shanghai /71T/2009H1N1-2009/05/31

A/ I ta ly /127/2009H1N1-2009/06/17

A/Denmark/528/2009H1N1-2009/06/09

A/NewYork/3166/2009H1N1-2009/04/26

A/Thai land/CU-H9/2009H1N1-2009/06/17

A/Canada-ON/RV1527/2009H1N1-2009/04/24

A/Hiroshima/216/2009H1N1-2009/06/30

A/Texas/09/2009H1N1-2009/04/25

A/NewYork/4870/2009H1N1-2009/09/10

A/SantoDomingo/572N/2009H1N1-2009/05/24

A/Fukushima/1/2009H1N1-2009/06/23

A/Par is /2590/2009H1N1-2009/04/30

A/Texas/04/2009H1N1-2009/04/14

A/Shanghai /1/2009H1N1-2009/05/23

A/Taiwan/T0826/2009H1N1-2009/07/10

A/Guangdong/02/2009H1N1-2009/05/27

A/Toronto/0462/2009H1N1-2009/05/26

A/NewYork/3354/2009H1N1-2009/05/08

A/Moscow/03/2009H1N1-2009/05/26

A/Bei j ing/3/2009H1N1-2009/05/23

A/Yokohama/1/2009H1N1-2009/06/09

A/Japan/PR1070/2009H1N1-2009/07/10

A/Par is /2580/2009H1N1-2009/04/30

A/Bogota/0466N/2009H1N1-2009/06/25

A/Cal i fornia/14/2009H1N1-2009/04/25

A/ I ta ly /49 /2009H1N1-2009/05 /27

A/NewYork/4777/2009H1N1-2009/08/14

A/Cal i fornia/06/2009H1N1-2009/04/16

A/Cal i fornia/04/2009H1N1-2009/04/01

A/Canada-QC/RV1954/2009H1N1-2009/05/17

A/Denmark/524/2009H1N1-2009/06/04

Figure 1. Whole-genome phylogeny of the 2009 world pandemic Influenza
A (H1N1) generated by USA. In green and red we point out the two main
clades, where the green Mexico/4108 is probably the closest isolate to the
origin of the flu. In blue and orange are two of the possible early evolutions
of the viral disease. In black, the organisms which in the literature do not
fall into one of the two main clades.

≥ log4m, and in the case of viruses they can also be very

large, capturing more information than FFP. Furthermore,

each unic subword has attested on average only few oc-

currences per sequence, in general only one occurrence per

sequence.

Count Influenza A Arch. & Bact. Plasmodium
Min genome size 12,976 bp 650 kbp 18,524 kbp
Max genome size 13,611 bp 8,350 kbp 23,730 kbp
Average genome size 13,230 bp 2,700 kbp 21,380 kbp
Irredundants |Is1,s2 | 3,722 3,167 k 16,354 k
Unic subwords |Us1,s2 | 60 112 k 706 k
Min |w| in Us1,s2 6 10 12
Max |w| in Us1,s2 1,615 25 266
Average |w| in Us1,s2 264 14 20
Untied inversions 28 % 31 % 33 %
Untied complements 22 % 20 % 19 %

Table III
MAIN STATISTICS FOR THE UNIC SUBWORD APPROACH AVERAGED

OVER ALL EXPERIMENTS.

We can further analyze the average number of inversions

and complements, where the increasing size of sequences

seems to attest their values to 33 % and 19-20 %, respec-

tively, out of the total number of unic subwords. However,

this fact may be relegated to the nature of the sequences

considered.

In conclusion we have shown that the unic subwords can

be used for the reconstruction of phylogenetic trees. Prelim-

inary experiments have shown very good performance in the

identification of major clusters for viruses, prokaryotes, and

unicellular eukaryotes. In the future we plan to investigate

the presence of other genomic subtle signals among the unic

subwords selected during the reconstruction.
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